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ABSTRACT

We study the practical computation of mitered and beveled offset curves of planar
straight-line graphs (PSLGS), i.e., of arbitrary collections of straight-line segments in the
plane that do not intersect except possibly at common end points. The line segments can,
but need not, form polygons. Similar to Voronoi-based offsetting, we propose to com-
pute a straight skeleton of the input PSLG as a preprocessing step for mitered offsetting.
For this purpose, we extend and adapt Aichholzer and Aurenhammer’s triangulation-
based straight-skeleton algorithm to make it process real-world data on a conventional
finite-precision arithmetic.

We implemented this extended algorithm in C and use our implementation for ex-
tensive experiments. All tests demonstrate the practical suitability of using straight
skeletons for the offsetting of complex PSLGs. Our main practical contribution is strong
experimental evidence that mitered offsets of PSLGs with 100000 segments can be com-
puted in about ten milliseconds on a standard PC once the straight skeleton is available
and that our implementation clearly is the fastest code for mitered offsetting even if the
computational costs of the straight-skeleton computation are included in the timings.
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1 INTRODUCTION

1.1 Motivation and Prior Work

Offsetting is a basic geometric operation that has applications in various fields of engineering. Consider
a polygon P in the plane that is closed and has no self-intersections. The interior offset curve of P with
offset distance r is the set of all points within the interior of P whose (Euclidean) distance from P is
exactly r. See Figure 1 for a family of offset curves inside of a polygon. It is well known that every offset
curve of a polygon consists of straight-line segments and circular arcs: every offset segment is parallel
to an input segment of P, and every offset arc corresponds to a reflex vertex of P, with all arcs having
the same radius r. (A vertex v is called reflex if the interior angle at v is greater than =.) Since every point
in the offset curve is exactly at the same distance from the source P, such an offset curve is also called
a rounded or constant-radius offset curve.

A mitered offset is obtained by dropping the offset arcs and extending the offset segments in order
to make them meet, see Figure 2. For mitered offsets, an offset segment is not at a fixed distance to its
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source segment but instead to the line supporting the source segment.

The definition of offset curves is readily extended to exterior offsets, to offsets of polygons with
holes, and to one-sided offsets of open polygonal figures. It is also common to speak simply of an
"offset” rather than of an "offset curve”.

Conventional algorithms for offsetting proceed in
four steps: (1) An elementary offset segment is gen-
erated for every segment of the input by translating
it appropriately, (2) a raw offset curve is constructed <
by closing the gaps between the elementary offset seg-
ments, (3) all pair-wise self-intersections in the raw
offset curve are computed, and (4) all invalid loops of
the raw offset are removed. Several strategies have been N
suggested for reducing the complexity of the pair-wise
il’lterSECtiOI’I CheCkS and for ldentlfYIIlg the anahd loops Figure 1: Voronoi diagram (blue’ Sohd and dot_

correctly even if multiple intersections coincide. For ted) of an input polygon P (bold), me-
further information on conventional offsetting we re- dial axis (blue, solid arcs only), and a
fer to the recent publication by Li et al. [19] and the family of rounded offset curves (gray).
references cited therein. One Voronoi cell is shaded yellow.

Persson, realizing the intimate connection between

Voronoi diagrams and rounded offsets, sketches the first algorithm for computing an interior offset of a
polygon based on its Voronoi diagram [22]. Roughly speaking, the Voronoi diagram partitions the interior
of a polygon (or the entire plane) into so-called Voronoi cells around each input segment s such that any
point in the Voronoi cell of s is closer to s than to any other input segment, see Figure 1. A Voronoi diagram
of a polygon consists of straight-line segments and portions of conic arcs. Closely related to the Voronoi
diagram in the interior of a polygon P is the medial axis, which is the set of all loci inside of P which
do not have a unique closest point on P. The medial axis is a subset of the Voronoi diagram. Held [13]
presents the first thorough study of computational geometry methods in Voronoi-based offsetting. We
refer to recent work by Held [14] for precise definitions and a survey of algorithms for, and applications
of, Voronoi diagrams of points, straight-line segments, and circular arcs.

Nowadays it is generally uncontested that Voronoi diagrams constitute the premier choice for off-
setting with regard to both speed and reliability, and computing the Voronoi diagram as a preprocessing
step is warranted even if only a few offsets are to be generated. Hence, it seems natural to apply a similar
approach to mitered offsetting, and to use straight skeletons for mitered offsetting.

1.2 Straight Skeletons

The straight skeleton of a polygon was introduced by
Aichholzer et al. [2]. Roughly, it is the geometric graph
whose edges are the traces of vertices of shrinking
mitered offset curves of the polygon, see Figure 2. Note <
that both the straight skeleton and the mitered offset
curves consist of straight-line segments only.

Straight skeletons are a versatile tool in computa-

tional geometry and have found applications in diverse N

fields of industry and science. Tomoeda et al., for in- .
stance, use straight skeletons to create signs with an Figure 2: The straight skeleton S(P) (blue) of an

illusion of depth [26], while Sugihara uses (weighted) input polygon P (bold) is the union
straight skeletons in the design of pop-up cards [24]. of traces of vertices of mitered offset
Aichholzer et al. [2] apply straight skeletons to roof de- curves (gray).

sign and terrain generation. We refer to Huber [15] for
a recent survey on straight skeletons.

Contrary to Voronoi diagrams, straight skeletons are not defined relative to a metric but as the out-
come of the so-called wavefront propagation process, which is similar in spirit to the prairie-fire analogy
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for Voronoi diagrams [5]: Every segment of a polygon P sends out a parallel wavefront segment that
moves with unit speed to the interior of P. The wavefront segments of two adjacent polygon segments
s1,s2 are joined by a wavefront vertex that moves along the angular bisector of s; and s,. Initially, at
time (i.e., offset) t = 0, the wavefront is identical to the input polygon P. We denote the wavefront of a
polygon P at time ¢ by Wp(t). At time ¢ the (orthogonal) distance between the wavefront segments and
the polygon segments equals the offset distance ¢. Hence, for the wavefront propagation process we feel
free to mix the terms "time” and “distance”.

During the wavefront propagation, two basic types of topological changes of the wavefront occur:
(1) An edge of the wavefront collapses to zero length and, thus, is removed from the wavefront. This is
called an edge-event. (2) A vertex of the wavefront moves into the interior of a previously non-incident
wavefront edge. Both the edge and the shrinking polygon will be split into two parts by this split-event.
Even more complex interactions may occur for input that is not in general position (but has parallel edges
or vertices that move toward each other), such as multi-split-events, when two or more vertices that are
not all connected by collapsing edges become incident, or even vertex-events, when a new reflex vertex
is born as the result of a multi-event [9, 17].

At any time during the wavefront propagation, the wavefront Wp(¢) consists of one or more mitered
offset curves. The propagation process ends when all components of the wavefront have collapsed.

The straight skeleton S(P) is the geometric graph whose edges are the traces of all vertices of the
wavefront over the propagation period. The edges of the straight skeleton are called arcs, and its inner
vertices are called nodes. Note that there is a one-to-one correspondence between nodes of S(P) and
events of the wavefront propagation process, and that the leaf-vertices of S(P) are identical to the vertices
of P[1].

The definition of the straight skeleton can be extended from polygons to planar straight-line graphs
(PSLGs) [1], i.e., to collections of straight-line segments that do not intersect except possibly at common
end points. The weighted version of the straight skeleton, where edges no longer move at unit speed,
was first mentioned by Eppstein and Erickson [9] and studied in detail by Biedl et al. [4].

Eppstein and Erickson’s algorithm [9] has O(n'”/1'*¢) as the currently best known worst-case time
and space complexity for unrestricted input with n segments. The algorithm by Vigneron and Yan [27]
achieves an expected O(n*?logn) time complexity but is only applicable if no multi-split events occur.
Both algorithms are too complex to be implemented, though, and the fastest previously known imple-
mentation is by Huber and Held [17].

1.3 Our Contribution

In order to provide a practical tool for mitered offset-
ting, we converted Aichholzer and Aurenhammer’s de-
scription [1] of a triangulation-based algorithm into an
implementation that can cope with real-world data. In <
Palfrader et al. [21], we sketched the theoretical basis of
an extension and modification of their algorithm nec-
essary for computing the straight skeleton of a general

PSLG within the entire plane, without relying on an im- N

plicit assumption of general position of the input.
More recently, while implementing our straight- Figure 3: A linear axis (solid blue) of an input

skeleton code SURFER based on the theoretical ba- polygon (bold), together with a family
sis laid out in [21], we investigated the peculiari- of offset curves with multi-segment
ties of a realization of that algorithm on a standard bevels (gray). The traces of reflex off-
floating-point arithmetic. For instance, we refine the set vertices are drawn dotted.

naive (determinant-based) determination of the col-
lapse times in order to improve the numerical reliability
of the algorithm.

In addition to constructing the straight skeleton, SURFER is able to compute mitered offset curves, see
Figure 2. SURFER maintains a data structure while computing the straight skeleton which then can be used
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to quickly compute offset curves for any desired offset by iterating over all faces of the straight skeleton.
Note that straight-skeleton based offsetting does not require time-consuming and error-prone opera-
tions like computing pairwise intersections or removing excess loops of raw offset curves. Furthermore,
offset distances need not be known prior to computing the straight skeleton itself. Having constructed
the straight skeleton, one mitered offset curve of a polygon with 100 000 segments can be computed in
about 10 ms using a 2010 Intel Core i7-980X CPU clocked at 3.33 GHz.

It is well known that mitered offset intersections for acute angles at reflex vertices can be far away
from their defining input. Hence, we extended our approach to support offsetting based on the linear
axis [25], resulting in beveled offsets where the distance between any offset curve point and its input
is bounded by v/2 times the orthogonal offset distance. (This distance threshold could also be adapted
according to a user-specified parameter.) Figure 3 shows offsets with multi-segment bevels.

We tested SURFER on about twenty thousand polygons and PSLGs, with up to over a million vertices
per input. Our tests provide clear evidence that SURFER runs in O(nlogn) time and linear space for all
practical input. More importantly, as witnessed by our tests, it is the fastest (published) algorithm for
computing straight skeletons and mitered offsets.

2 TRIANGULATION-BASED ALGORITHM

2.1 The Wavefront Propagation Process

Aichholzer and Aurenhammer’s algorithm [1] simulates the propagation of the wavefront to compute the
straight skeleton of a polygon or PSLG. To determine when the next event will happen, they use a priority
queue of potential future events. The main idea behind their approach is to maintain a kinetic triangu-
lation of the part of the plane that has not yet been reached by the wavefront. (A kinetic triangulation is
a triangulation whose defining vertices move.) Every change of the topology of the wavefront and, thus,
every edge- or split-event is witnessed by the collapse of a triangle of the kinetic triangulation. Figure 4
demonstrates the process.

A= A=\

Figure 4: Wavefront propagation process of a polygon P over time. The kinetic triangulation is shown in
green and the parts of the straight skeleton S(P) that have already been constructed are shown
in blue. As any change of the wavefront topology is witnessed by the collapse of a triangle,
we have highlighted the next triangle to collapse in every subfigure. In particular, the triangle
highlighted in (a) and (b) collapses as its top-left edge shrinks to zero-length in an edge-event,
giving rise to the straight-skeleton node first seen in (c). The collapse of the triangle highlighted
in (c) witnesses a split event which divides the offset polygon into two, as seen in (d) and (e).
Subfigure (f) shows the final straight skeleton and a family of offset curves.

Note, however, that not every triangle collapse implies a change in the wavefront: a wavefront vertex
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may move across a triangulation edge, requiring a local update to the triangulation. This update is called
a flip-event because it consists of flipping a single edge, see Figure 5.

(@ (b) (d)

Figure 5: Not every triangle collapse implies a change of the wavefront-topology, see subfigure (b). We
nevertheless have to update the triangulation to stay consistent and avoid a situation like the
one shown in (c). By replacing, at the time of collapse, the dotted edge with the other one in the
remaining quadrilateral, we retain a valid triangulation of the part of the plane not yet visited
by the wavefront, see subfigure (d). This is called a flip-event.

Details of the wavefront propagation process. After constructing the initial wavefront and triangulation,
the algorithm computes the collapse times of all triangles and stores them in a priority queue. Then,
the wavefront propagation process starts, that is, events are processed from the queue. Each dequeueing
operation provides the triangle that collapses soonest. This collapse corresponds to the next event, either
an edge- or split-event, or a flip-event. The process ends when the queue is empty.

When the topology of the wavefront changes during an event, some wavefront vertices may merge,
in the case of an edge-event, or split, in the case of a split-event. They will also change their velocity
when their incident wavefront edges change. Every such change can be seen as old kinetic vertices dying
and potentially new kinetic vertices being born to replace some old vertices. This way, the life spans
and the speeds of the kinetic vertices may be different, but every vertex moves at constant speed during
its specific life span. (A vertex’s velocity is a function of the directions and angle between its incident
wavefront edges.)

In an edge- or split-event, the triangle collapsed is removed from the kinetic triangulation. Any
remaining triangles that are incident to vertices that were replaced need to have their incidences updated
and collapse times re-computed as well as their entries in the priority queue updated. In a flip-event, two
triangles get replaced by two different triangles as a triangulation edge flips. Again, the priority queue
has to be updated accordingly.

After the end of the propagation process, the arcs of the straight skeleton are the line segments traced
out by all kinetic vertices over their individual life spans. If we consider these arcs to be directed line
segments, then they start either in input vertices or in straight-skeleton nodes, each of which corresponds
to one event and, thus, to a triangle collapse. They also stop in such nodes. If we compute the straight
skeleton in the entire plane, then some kinetic vertices may escape to infinity, giving rise to straight-
skeleton arcs that are rays rather than line segments.

Collapse times. In order to fill the priority queue, one needs to compute the collapse time of every triangle
of the kinetic triangulation. It is well known that the signed area Aa of a triangle A(v1,v2,v3) can be
obtained by resorting to a determinant computation:

Uiz Uiy 1
V2,p V2y 1|,
U3,z V3,y 1

Aa(t) = 5

where v; , and v, ,, are the z— and y-coordinates of the three vertices v1, v2, vs of A. Since these coordinates
are time dependent, the area of a kinetic triangle also is a function of time.
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Recall that each kinetic vertex moves at its own, constant velocity. Thus, the coordinates of a triangle’s
vertices are linear functions of the time ¢, and the area of a kinetic triangle is a quadratic function in ¢.
Hence, at least in theory, its (up to two) real roots can be computed easily. These roots correspond to
collapse times of the triangle and, therefore, to potential event times.

Note that when computing the new collapse times of triangles, either initially at time ¢ = 0 or after
handling an event at some later time ¢, only times that are not in the past are considered, that is, only
collapse times ¢’ > ¢ are valid. If no such solution exists, then the triangle will never collapse and there
is no need to insert it into the priority queue. This can happen, for instance, if the straight skeleton of a
PSLG in the entire plane or of the outside of a polygon is being constructed and vertices of triangles escape
to infinity. It may also happen when computing the interior straight skeleton of a simple polygon, but in
this case a later event will cause this triangle’s vertices to change and its collapse time to be re-computed.

2.2 Simultaneous Events

The original description [1] of Aichholzer and Aurenhammer’s algorithm hinges upon the implicit as-
sumption of general position. In particular, their description lacks any hint on how to proceed if several
triangles collapse simultaneously. (Also some proofs of worst-case bounds require all collapse times to
be distinct.)

Unfortunately, we observed simultaneous collapses quite frequently for realistic input data. Thus,
such an assumption is clearly not warranted for real-world data. Problematic simultaneous collapses
primarily manifest themselves in two settings:

1. Parallel lines in the input can cause two or more wavefront edges to move toward one another,
causing an area that is covered by many triangles to collapse when the two opposing wavefronts
meet. Depending on the exact layout of wavefront edges and vertices, this will result in one or more
edge-, split-, and flip-events that all happen at the same time.

2. Several flip-events may happen at the same time between adjacent triangles when their wavefront
vertices all become collinear. Processing one of these flip-events may cause one or two of the two
new triangles introduced by the flip to also collapse in further flip-events at the very same time.
Processing those, in turn, can re-create the original triangles. Thus, this situation may cause the
algorithm to get stuck in a flip-event loop from which it cannot escape.

Due to inaccuracies caused by finite-precision arithmetic, an implementation might fail to determine that
all these events happen at exactly the same time, which complicates correct processing of simultaneous
events even more.

We handle problems stemming from the first setting by resorting to the concept of infinitely fast
moving vertices. Such vertices may be introduced by an event we are handling and then cause any incident
triangles to be processed immediately and at the same logical time in the wavefront propagation process.

If the set of all triangles involved in the multi-flip event cloud of the second setting could be assumed
to be correct — for instance because the algorithm is run with exact arithmetic — then one can devise an
ordering that ensures their eventual resolution [20]. However, with limited precision even establishing
that set is impossible. Our solution [21] is to keep a journal of a sufficient number of recent flip events.
Should we process the same flip event a second time, we have potentially (though not necessarily) en-
tered a flip-event loop. Once detected, we can apply a special flip-event-loop resolution procedure that
identifies the correct set of triangles and re-triangulates the area covered by them and their immediate
neighbors.

2.3 Finding and Classifying Collapses

One particular challenge of an implementation of kinetic triangulations is to reliably classify events in
order to process collapses correctly and to find these collapse times in the first place: Consider, for
instance, a triangle whose three kinetic vertices move such that they meet at the same point at the same
time, see Figure 6. The straightforward determinant-based approach to finding its collapse time involves
computing the roots of a quadratic polynomial. Since the collapse will happen when all three vertices
meet, the resulting quadratic will only touch the z-axis in a single point. That is, the quadratic polynomial
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has one real root of multiplicity two. - T T T

Since we work with finite-precision arithmetic, r A collapses
such as standard IEEE 754 double precision or even the i ]
arbitrary-precision library MPFR [11], we have to expect i ]
minor numerical inaccuracies to occur in our computa- L . ) \
tions. However, such an inaccuracy might cause us to -
miss the collapse of that triangle entirely! We mitigate
this problem by using alternate means to compute the Figure 6: The collapse time of a triangle (left)

f (time)

time

collapse times whenever possible. As an added bonus, can be computed in different ways.
these approaches also help in classifying the events. The parabola plotted in blue is the

(signed) area of the triangle over time.
Collapsing edges. For finding edge-collapses and col- The function in green represents the
lapses which indicate multi-split events, we consider (signed) distance of one vertex to its
the pairwise distances of each vertex pair of a triangle: opposite edge.

Let (v1,v2) be a pair of vertices. The distance between

them also is a quadratic in time. However, we can use

its derivative to find the time ¢ of closest approach between v; and v». The derivative is linear in time
and, hence, more robust to solve. If the line segment s = (v, v2) is a wavefront edge, we know that s must
collapse at some point in time (either in the past or future) if we got a unique solution for ¢ — otherwise,
the vertices run in parallel and the edge never collapses. If s collapses, so does its incident triangle. If,
on the other hand, the line segment s = (v1,v2) is not a wavefront edge but a triangulation edge then it
need not have collapsed at time t. We compute the length of s at time ¢, and, if it is reasonably close to
zero, we assume a multi-split event is taking place at that time. Otherwise, no event happens.

Vertices moving into edges. For reliably finding the time of split-events and flip-events for triangles that
have a wavefront edge we proceed differently. Note that a triangle collapse that indicates a split-event
occurs only for triangles with exactly one wavefront edge e. The vertex v opposite of e will be the vertex
that crashes into e, causing the split-event. Similarly, when a triangle with a wavefront edge ¢ is involved
in a flip-event, it will always be the vertex v opposite of e that is moving across the supporting line e of
e. Neither split- nor flip-events are possible in triangles with more than one wavefront edge.

To find the time of a potential event, we consider the distance of the vertex v to the edge e over time.
We know that e moves at unit speed perpendicular to its direction vector. Furthermore, we can project
the velocity of v onto the normal vector of e. The magnitude of this projected vector (either positive
or negative, depending on whether v is moving toward or away from e) plus 1 for the edge movement
yields the speed of approach. Dividing the orthogonal distance of v to e by the speed of approach yields
a possible time for the next split- or flip-event. The actual type of the event depends on whether v
intersects e in the interior of e itself, or outside of e. If » hits an end point of e then a multi event such as
a multi-split event has occurred.

We emphasize that this approach is significantly more robust than the standard determinant-based
approach, see again Figure 6.

2.4 Linear Axis

Recall that, when computing the straight skeleton, the initial wavefront is an identical copy of the input
polygon. As the wavefront propagation starts, edges move in a self-parallel manner toward the interior
of the polygon. This implies that vertices of the wavefront move along the bisectors of input edges at
whatever speed is required to "keep up” with the wavefront. Therefore, very acute angles between input
edges cause very fast vertices: as an angle approaches 2z, the speed of its vertex approaches infinity. At a
reflex input vertex, the distance of its corresponding wavefront vertex to the input thus grows quickly, and
the wavefront vertex tends to trace out a long arc. See, for instance, the reflex vertex on the right-hand
side of Figure 2 that causes the horizontal arc which spans almost the entire polygon. As a consequence,
mitered offsets might be far away from their input.

The linear axis was introduced a decade ago by Tanase and Veltkamp [25] in order to mitigate this
problem. Figure 3 shows a linear axis of the same input polygon as previously used for Figure 2. The linear
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axis is similar to the straight skeleton in that it is defined by an almost identical wavefront propagation
process. In particular, it also consists of traces of wavefront vertices over a propagation process. It differs
from the straight skeleton in the handling of reflex vertices.

Handling of reflex vertices. For a linear axis, more than one wavefront vertex may emanate from a reflex
input vertex. This is achieved by adding zero-length wavefront edges, so-called hidden edges, to the
initial wavefront at reflex vertices. The directions of these edges are chosen such that the interior angle
between any pair of adjacent wavefront edges sent out from one reflex input vertex is the same. This
results in the wavefront vertices fanning out uniformly from each reflex vertex. Furthermore, this choice
bounds the speed of any wavefront vertex. The particular bound depends on the exact number of vertices
sent forth, but it is always less than or equal to v/2, approaching 1 as the number of hidden edges goes to
infinity. Recall that edges move at unit speed. Therefore, in any given offset curve of orthogonal offset
distance d, no vertex is farther than /2 - d from any input.

Traces of reflex vertices. The second difference is merely technical in nature. While the straight skeleton
consists of traces of all wavefront vertices over the propagation process, the linear axis excludes traces
of wavefront vertices emanated from reflex vertices. The dotted segments in Figure 3 correspond to the
arcs dropped from the linear axis; the linear axis itself consists only of the solid, blue lines. Tanase
and Veltkamp [25] prove that the linear axis converges to the medial axis as the number of wavefront
vertices sent out at every reflex vertex goes to infinity. (Compare the solid blue structures of Figure 1
and Figure 3.)

Computing the linear axis. We extended our straight-skeleton algorithm to support computing the linear
axis. Currently, the number of hidden edges at each reflex vertex is the same everywhere, but our code
could easily be adapted to make this a per-vertex property, possibly based on the angle between its
incident input edges, or on per-vertex input provided by the user.

3 OFFSETTING BASED ON STRAIGHT SKELETONS

A straightforward approach to straight-skeleton based offsetting is to simply dump the wavefront when
the desired offset distance t is reached. If another offset curve for an offset distance ¢’ > ¢ is sought
afterwards, we can simply continue the wavefront propagation, starting at ¢+ and proceeding until ¢ is
reached. This approach to offsetting is supported by our implementation, SURFER.

However, if multiple offsets were to be computed for offset distances that are not arranged in in-
creasing order, we would have to re-start the wavefront-propagation process at ¢ = 0 for each new offset
distance ¢’ that is smaller than the previous distance t. Note that an outward wavefront propagation that
starts at We(¢) will not, in general, restore Wp(¢'). (Rather, one would have to store the entire wavefront-
propagation history, including all topological changes.)

If multiple offsets are sought in anon-sorted order, it seems more natural to compute the full straight
skeleton (or linear axis) in a preprocessing step, and to exploit the information embedded in the straight
skeleton to quickly and efficiently compute offset curves. (We show experimentally that this approach is
competitive even if just a single offset is sought, see Section 4.)

A mitered offset curve of a polygon or PSLG consists of straight-line segments only. These line
segments are grouped within one or more polygons. (This is true even for PSLGs that do not form closed
polygons.) The straight skeleton partitions a polygon or the plane into faces, similarly to the partition
induced by a Voronoi diagram. Each face is bounded on one side by the input edge that swept this face.
On the other sides, a face is bounded by straight-skeleton arcs. Offset curve segments in a given face
are always parallel to the input edge that defined this face, and the distance between the offset segment
and the supporting line of the input edge is the offsetting distance. Thus, line segments that make up an
offset curve never have their end points within a face. Instead, end points always lie on the boundary of
faces, i.e., on straight-skeleton arcs. See the offset curves in Figure 2 for an example.

Of course, similar considerations also apply to the linear axis if one includes all arcs traced out by
reflex vertices. (That is, the blue dotted segments in Figure 3.) For some faces incident at reflex vertices,
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Algorithm offset (d, A):
Input: Offsetting distance d, set of arcs A
offset < [ ] ;
forac Ado

if — a.seen A a.is_alive_at(d) then

‘ offset.append (one_curve(d, a)) ;

end
end
return offset ;
end

Algorithm one_curve(d, a):
Input: Offsetting distance d, arc a alive at d
curve < [], start < a;
repeat
curve.append (a.position_at_time(d)) ;
a.seen < true;
face « a.right_face;
repeat
‘ a + a.next_cw_in_face(face) ;
until a.is_alive_at(d);

until a = start;
return curve ;
end

Figure 7: Computing an offset once the straight skeleton is known.

the defining input edges will then be the hidden edges discussed in Section 2.4. Using the linear axis will
result in beveled offsets as seen in Figure 3. The number of hidden edges at a reflex vertex corresponds
to the number of bevel segments at that corner.

3.1 Computing One Mitered Offset

Recall that arcs in the straight skeleton are those line segments which have been traced out by kinetic
vertices in the propagation process. Thus, there is a one-to-one correspondence between kinetic vertices
and straight-skeleton arcs, and our implementation just needs to keep track of kinetic vertices, including
their start and end times and loci. These start and end times also induce a natural orientation on the
straight-skeleton arcs.

While computing the straight skeleton, we maintain a data structure that represents the straight-
skeleton faces: For each input segment, we store a reference to its two incident kinetic vertices. Each
kinetic vertex has pointers to the next (clockwise) and previous (counterclockwise) kinetic vertex for both
of its incident faces. As a result, we are able to traverse the boundary of every straight-skeleton face.

Now recall that the time span of a kinetic vertex has a one-to-one correspondence to the range of
(orthogonal) offset distances traveled by the vertex. Thus, an arc a of the straight skeleton is intersected
by an offset curve for offset distance d if and only if d lies within the time span of the kinetic vertex that
defined a. We call this time span the offset interval of a.

To compute all offset curves for an offset distance d we proceed as follows: We scan all straight-
skeleton arcs until we find a so-far unvisited arc « whose offset interval contains d. No particular order
of arcs is required for this scan as long as we make sure that all arcs are scanned eventually and that no
arc is scanned repeatedly.

Let f be the face to the right of a, and let s be input segment that swept f. Furthermore, let v be the
kinetic vertex that traced out a. To obtain the first vertex of an offset curve, we compute the locus of v
at time d. This locus corresponds to the intersection of a with an offset segment of s at distance d. Then,
we advance clockwise along the boundary of f until we encounter another straight-skeleton arc o’ whose
offset interval contains d. We compute the offset vertex on o’ and leave f to move to the face on the other
side of a'.

We repeat this step until we return to the initial arc a, marking all straight-skeleton arcs that were
encountered as visited. Meeting a again indicates that one offset polygon has been fully determined. A
continued scan of the remaining unmarked straight-skeleton arcs reveals all further offset polygons for
the offset distance d. This algorithm is sketched in Figure 7.

Thus, straight-skeleton based offsetting is as simple as traversing a planar graph. Obviously, the
same process can be used to compute beveled offsets based on the linear axis, provided that the dotted
arcs of Figure 3 are added to the linear axis.
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Since the number of straight-skeleton arcs (kinetic vertices) is linear in the number n of segments
of the input PSLG, and because the amount of work we have to do is constant per arc, this offsetting
procedure runs in time linear in n, i.e., in O(n) time. In practice, generating one offset curve is extremely
fast if the straight skeleton is already known, taking a few milliseconds even for input on the order of
hundreds of thousands of vertices, see Figure 10b in Section 4.

3.2 Comparison with Other Approaches

Known straight-skeleton codes include the implementations by Felkel and Obdrzalek [10], Cacciola [6],
and Huber and Held [16]. Cacciola’s code is a corrected and improved version of the Felkel-Obdrzalek
algorithm which is known to be flawed [15, 28]; it is shipped with the CGAL library [7]. These codes use
similar data structures for offsetting and, thus, also generate the same kind of mitered offsets. (They
differ only in speed, see Section 4.)

Interestingly, even a thorough literature and Web search reveals hardly any other published (and
non-proprietary) implementation that supports mitered offsetting. It is easy to find several Java applets
that compute mitered offsets, but their authors frankly admit that these codes are either not reliable or
cannot handle general polygons and arbitrary offset distances.

The only notable exceptions are the well-known
polygon-clipping libraries CrippER [18] and Geos [23].
Both libraries apply general-purpose Boolean clipping X x
algorithms to compute mitered and (approximations of)
rounded offsets.

Note, though, that their offsets are different from
those computed by means of straight skeletons, see
Figure 8. Without knowing details of the offsetting al-
gorithm employed by these codes, it is impossible to (a) CLIPPER, GEOS (b) SURFER
pin down the exact reason why the two excess areas in
Figure 8a are not removed. Both libraries seem to com- Figure 8: An input polygon (bold) with one off-
pute winding numbers [8] in order to weed out incor- set curve. Note that the offsets differ.
rect regions within the union of elementary offset areas
that form the raw offset polygons. Our tests suggest that the same winding-number algorithm is ap-
plied for both rounded and mitered offsets. However, the rounded-offsetting problem and the mitered-
offsetting problem differ in spirit since mitered offsetting allows vertices to travel arbitrary distances.
Straight-skeleton based offsetting prevents portions of the wavefront to penetrate each other, resulting
in different offsets. But, of course, applications might exist that prefer CLIPPER’S or GEOS’s offsets over
straight-skeleton based offsets.

4 EXPERIMENTAL RESULTS

What is the price that we have to pay for computing the full straight-skeleton as a preprocessing step?
Is this approach competitive with known approaches to mitered offsetting? In order to answer these
questions, we implemented our algorithm in C. Our implementation, SURFER, can work with standard
IEEE 754 double-precision floating-point arithmetic as well as with arbitrary-precision arithmetic based
on the MPEFR library [11].

We conducted performance tests with SURFER on about twenty thousand polygons and PSLGs with up
to over a million vertices per input, consisting of both real-world and contrived data of different char-
acteristics, including CAD/CAM designs, printed-circuit board layouts, geographic maps (e.g., Figure 9),
fractal and space filling curves (e.g., Figure 11), star-shaped polygons and random polygons generated
by RPG [3], as well as sampled spline curves, families of offset curves and font outlines. Some datasets
contain circular arcs, which we approximated by polygonal chains in a preprocessing step. See our web-
page [12] for high-resolution images of straight skeletons and mitered offsets computed by SURFER.

Previous tests [21] showed that SURFER runs in O(nlogn) time and linear space for practically all
n-segment inputs. (From a theoretical point of view, one could design contrived inputs that cause the
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algorithm to consume more time, but we have not encountered any such input in our tests.) In particular,
SUREER is faster than BONE, the fastest known implementation of a straight-skeleton algorithm by Huber
and Held [16], which in turn is significantly faster than Cacciola’s implementation [6] that is shipped with
the CGAL library [7]: As reported previously [21], extensive experiments suggest an average runtime (in
seconds) of 5.8-10"n log n for SURFER for an n-segment input, 1.5 - 10~°n log n for BONE, and 4.5-10""n2log n
for Cacciola’s CGAL code.

Computing a single offset. In the following, we com-
pare the running time of SURFER in its IEEE 754 double-
precision mode against the C++ version of CLIPPER. We
should stress that mitered offsetting is not the primary
goal of either CLIPPER or GEOS, but both libraries are fre-
quently recommended as offsetting engines on the Web.

For this test, we limited our inputs to simple poly-
gons (without holes) and computed one interior offset.
Since CLIPPER accepts only integer coordinates we gener-
ated input for CLipPER by scaling every polygon to fit into

the unit square, multiplying every vertex coordinate by  Fjgure 9: A simplified outline of Austria with

10%, and then casting it to an integer. In order to allow hole (solid black), a linear axis (solid
an automated run of the tests, for every test polygon, blue) with the traces of reflex vertices
we set the offset distance to one quarter of the radius of (dotted blue), and a family of offset
the maximum inscribed circle of the polygon. All off- curves (dashed gray).

setting computations were terminated if they exceeded

more than ten minutes of running time. The wavefront propagation of SURFER was stopped once the re-
quired offset distance was reached, and then the procedure outlined in Section 3.1 was used to construct
the offset curve.

The results are plotted in Figure 10a. (All tests were conducted on a 2010 Intel Core i7-980X CPU
clocked at 3.33 GHz.) This plot clearly shows that SURFER tends to be faster than CLippER for virtually all
data sets. Our tests revealed that the difference in speed becomes more pronounced as input gets more
complex or offsetting distances become larger. Also, the variation in the running times is much larger
for Cripper than for SURFER. In any case, the plot suggests that CLIPPER’s offsetting suffers from a quadratic
(or even worse) average-case complexity. Results for the Geos library are not plotted since it tends to be
significantly slower than CLIPPER, running about 100 times longer than CLIPPER.

10!

LU L L e e

running time (seconds)
=
<

running time (seconds)
—
S

1072 1072
1073 1073
107 104
102 10° 10* 10° 10° 10? 10° 10* 10° 10°
input size (number of vertices) input size (number of vertices)
(a) CLIPPER vs. SURFER: Computing one offset (b) SURFER: Preprocessing and SK-based offsetting

Figure 10: (a) Run-time comparison between CLIPPER 6.1.3 (green) and SURFER (blue) when computing in-
terior offsets. (b) Time required by SURFER to compute the full straight skeleton (blue) and a
single offset once the straight skeleton is known (red).

Our tests also demonstrated that both SURFER and CLIPPER require a linear amount of memory. SURFER
needs roughly 1 MB of memory per 1000 input vertices. Hence, for an input of 100 000 vertices SURFER

DRAFT - to appear in Computer-Aided Design and Applications, 2015



12

requires approximately 100 MB of RAM. This is about twice the footprint of CLIPPER.

Computing many offsets. The plot of Figure 10b shows the time consumed by SURFER for computing the
full straight skeleton and for generating one offset once the straight skeleton is available. In order to
get reliable timings even for small inputs, we averaged the running times of the offsetting step over at
least one thousand computations per input. (Once the straight skeleton is known, the running time of an
offset computation does not depend on the actual offset distance chosen.)

5 CONCLUSION

We explain how the triangulation-based straight-
skeleton algorithm by Aichholzer and Aurenhammer [1]
can be extended to make it compute (1) straight skele-
tons, (2) linear axes, and (3) mitered and beveled
offsets of arbitrarily complex real-world PSLGs on a
finite-precision arithmetic. We implemented both the
straight-skeleton algorithm and the offsetting algo-
rithm in a C library called SURFER.

Extensive tests clearly demonstrate that the re-
sulting implementation is the fastest code for mitered
offsetting currently available: offsetting can be per-
formed on a standard PC within a few milliseconds
even for a fairly complex PSLG with several hundreds
of thousands of segments if the straight skeleton of
the PSLG has been computed in a preprocessing step.
Since SURFER consumes only about 60 us to 70 us per
input segment, the computation of the straight skele-
ton seems to be well warranted even if only few offset
curves have to be generated. In particular, computing
even just one offset by SURFER based on straight skele-
tons tends to be significantly faster than offsetting by
means of CLIPPER, even if the time consumed by SURFER’S
straight-skeleton computation is included in the timings.

Figure 11: A Koch snowflake (solid black), its
straight skeleton (solid blue), and
a family of corresponding offset
curves (dashed gray).

An obvious task for future work is the extension of mitered offsetting to offsets with non-uniform
offsetting distances. One could, for instance, fix an offset distance d for one input edge and then specify
all other offset distances as fractions or multiples of d. Such a non-uniform offsetting could be realized
based on weighted straight skeletons. Baring some technical details which still are to be resolved, we
believe that SURFER could be extended to handle also this more general offsetting problem.
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